
THEORY OF THE TENSILE TEST* 

E. W. HARTt 

The phenomenology of the tensile test is re-examined with special attention to the influence of strain 
rate sensitivity of the flow stress. Explicit formulae 8re deduced for the measured variables of the test in 
tams of the phenomenological per8meters of the material. The stability of the deformetion is exemined, 
snd the growth of en inhomogeneity is described in the unstable deformation regime. The effect of 
elasticity of the specimen and the testing machine is investig8ted with specie1 8ttention to relaxation tests. 

THEORIE DES ZUGVERSUCHS 

Die Ph&nomenologie des Zugversuchs wird erneut untersucht, unter besonderer Berticksichtigung des 
Einflusses einer Verformungsgeschwindigkeitsebhiingigkeit der Fliegsp8nmmg. Die gemessenen 
Versuchsvariablen werden explizit durch die ph&nomenologischen P8r8meter des M8terials eusgedriickt. 
Die Stebilitiit der Verformung wird untersuoht. Die Entwiokhmg einer Inhomogenitiit wird bei der 
instabilen Verformung behandelt. Ferner wird der Ein6u5 der Elastizitiit von Probe und Zugapparatur 
untersucht, mit besonderer Berticksichtigung von Relaxationsversuchen. 

THEORIE DE L’ESSAI DE TRACTION 

Les phenomenes qui camct6risent l’essai de traction sont Btudi&s en accordant une attention particuliere 
8 l’effet de 18 vitesse de deformation sur le nivertu de 18 tension de glissement. L’auteur 8 Bt8bli des 
formules car8&&stiques de l’influence des differentes variables mesurables de l’essai en fonction des 
pammetres ceracteristiques des materiaux Studies. 11 etudie egelement la st8bilite de la deformation 
et 18 oroiss8nce d’un inhomogeneite pour un regime de deformation instable. 

11 Btudie enfln l’influence des caracteristiques d’elasticite, tant de l’echentillon que de 18 machine 
d’essai, sur les resultats des es&s et plus pctrticulierement dans le ~8s d’essais de relaxation. 

1. INTRODUCTION 

This is a report of the results of a study of the 
phenomenology of tensile deformation of metals with 
special attention to the effects of deformation rate 
sensitivity. The investigation has been restricted 
to phenomena and relationships that are relatively 
independent of special assumptions about the micro- 
scopic mechanism of deformation. Within this 
limitation a number of effects can be rationalized as 
artifacts of the tensile or creep test, dependent only 
on a few measurable parameters of the material and 
on the mechanical properties of the testing apparatus. 
Specially notable among these effects is the high 
ductility, noted for some metals at relatively high 
homologous temperatures, that has been termed 
“superplasticity.” 

The importance of strain rate sensitivity at elevated 
temperatures was first clearly indicated by N&dai and 
Manj0ine.o) More recently Backofen and Avery(2) 
have noted its relationship to the superplasticity 
problem. The present work extends the conclusions 
of those authors in a unified manner. 

The plan of this work is as follows: in section 2 the 
phenomenological model is introduced and the general 
relationships for homogeneous deformation are de- 
duced. In Section 3 the problem of the stability of 
deformation in the tensile test is discussed end general 
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criteria for stability are evaluated. In addition an 
estimate is made for the rate of progress of an inhomo- 
geneity when the deformation is unstable. Section 4 
contains considerations of the effect of elasticity on 
tensile test results when the rate sensitivity is impor- 
tant. The discussion in Section 5 is devoted to a 
critique of the tensile test. 

2. RELATIONSHIPS FOR HOMOGENEOUS 
DEFORMATION 

In order to carry out any calculations some 
phenomenological assumption must be made con- 
cerning the relationships among true stress a, natural 
plastic strain E, and strain rate i. It will be assumed 
here that at any stage of deformation o is dependent 
on the previous strain history, and that small changes 
in c depend linearly on the corresponding small 
changes of E and i. Thus, in differential form, 

da = o,dc + a&. (1) 

This differential form need not be integreble, and so 
the coefficients cE and or are not simple partial 
derivatives but rather should be considered as general 
material parameters that depend on the specimen 
history. These parameters change their values as 
the deformation proceeds, and we shall make special 
assumptions about their nature as needed in the 
subsequent treatment. A similar approach was 
employed earlier by Hart@) in a consideration of 
Liiders bands. 
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We shall proceed next to deduce the relationships 
between the measurable quantities of a tensile test 
and the phenomenologicd material parameters 0, and 
G, for the condition of uniform deformation. 

Let P be the load supported by the specimen, 
L be the length of the specimen, and A be the cross- 
section at any instant during a deformation procedure. 
By these symbols we denote the instantaneous values 
of the quantities at each instant of the deformation 
history. Then, by definition of the stress, 

P= GA. (2) 

Denoting differentiation with respect to time by a 
dot over the symbol concerned, the time rate of 
change of P is readily obtained as 

P = c+A + aA. (3) 

We shall represent ci by dividing equation (1) by 
dt, obtaining 

ii = o,P + a& (4) 

We need also the relationships 

i = L/L = -A/A, (5) 
and 

i’ = L/L - (L/L)” (6) 
= --A’/A + (A/A)? 

Now dividing equation (3) by equation (2) we obtain 

P/P = A/A + 610, 

and further substitutions involving equations (4-6) 
lead to the basic relationship 

P/P = -(L/L)[l - y + m] + (L/L),, (7) 
where 

y = (l/ok%, (3) 
and 

m = (C/o)a,. (9) 

The quantities y and m are material parameters and 
in general vary through the deformation history. 

Equation (7) can now be specialized to describe 
two familiar types of tensile test : 

Case A: The constant extension rate test. 

For this test L = 0, and so 

(dlnP/dlnL)i; =y-l-m, (10) 

where the subscript L on the derivative means that 
L is constant. 

Case B: The constant load creep test. 

For this case P = 0, and since 

(L/L)/(L/L) = d In L/d In L, 
(dln~/dlnL)p=(l-y+m)/m. (11) 

Another special case of interest is the constant 
stress creep test. For this purpose we divide equation 
(4) by (T and use equations (5), (6), (8) and (9) to obtain 

c?/cr = r(L/L) + m[(E/L) - (L/L)]. 

This leads us easily to 

Case C: The constant stress creep test. 

For this test ti = 0, and so 

(d In L/d In L), = 1 - (y/m). (12) 

3. STABILITY OF TENSILE DEFORMATION 

A stability criterion 

The formulas of Section 2 are valid only if the 
deformation proceeds homogeneously. If on the 
other hand a small portion of the length of the speci- 
men has a cross-section that differs from the cross- 
section of the remainder by some small amount, 
the formulas are in error by a small amount. If in 
the course of the deformation the magnitude of the 
cross-section difference does not increase, we shall 
call the deformation stable. It is only when the 
deformation is stable or nearly so that the error 
can be expected to remain small. Furthermore, we 
can then expect high ductility without excessive 
localized deformation. 

To investigate the stability in greater detail we 
shall compute the variation in area increment rate 
sA as a function of variation in cross-section 6A. 
Since P is the same at all points of the specimen, 
a variation of equation (2) results in the relation 

0 = a8A + A&. (13) 

In analogy to equations (l), (5) and (6) we have the 
further equations 

do = CT& + a&, (14) 

BE = -6A/A, (15) 

66 = --6&A + (A/A)(GA/A). (16) 

Combining these relationships and making use of the 
definitions of y and m, we obtain the result 

(6 In A/s In A)P = -(l - y - m)/m. (17) 

Now, our stability criterion can be stated as follows : 

The deformation is stable if 

@A/W, I 0, (18) 

and is otherwise unstable. Since in tension A/A is 
negative, this condition can be restated so that the 
deforwwtion is stable in tension if 

(6 In A/s In A)P 2 0 (18’) 
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or, in terms of the phenomenological parameters, when 

y+m>1. (19) 

It is readily seen that our criterion is in agreement with 
classical Considere condition for strain hardening 
materials with negligible rate dependence, and with 
the usual criterion for purely viscous materials 
(y = 0) for which the limiting stable material is that 
which displays Newtonian viscosity, or for which 
m = 1. 

The constant loarE test 

An interesting sidelight on the stability condition 
equation (18’) is that the point of onset of instability 
can be noted directly from the measured variables 
in the constant load creep test. This is because the 
comparison of a variation along the length of a speci- 
men, since the load is the same at each point, is 
analogous to successive increments of deformation 
in time when the deformation proceeds at constant 
load. We may replace 6A then by A&. The deforma- 
tion at constant P is stable then so long as 

d 
%l”A 

I 
$InA 20, 

or, more simply, if 
A’ro. (20) 

By equations (5) and (6) this leads easily to the 
condition 

L/L - 2$/L) < 0, 
or 

E/f, 5 2(L/L). 

But the left-hand member is di;kEL, and so the defor- 
mation is stable when 

&/a-L < S&/L), (21) 

for creep under constant load. This condition can 
be applied to the plot of L versus L at constant P 
by simple geometrical construction. 

The growth of inhomogeneities 

The discussion of inhomogeneous deformation can 
be carried somewhat farther with the inclusion of a 
simplifying assumption concerning the values of the 
material parameters y and m. We shall consider the 
progress of an inhomogeneity in a tensile specimen 
that is creeping under constant load during “stage 
two” of the deformation history. This stage is charac- 
terized grossly by a relatively constant (actually 
slightly increasing) L, and can be more precisely 
described as a regime during which y = 0 and m is 

constant. We need not assume anything about the 
nature of y or m up to that stage. 

The problem is then as follows : 

At some initial time the specimen has uniform 
cross-section A,, except for a small segment that 
has cross-section A, + 6A, where 6A, is small. 

After a time interval At the principal cross-section 
has changed from A, to A and the special segment 
has become A + BA. 

The problem is to compute the dependence of 
6A upon A, A, and dA,. 

Note first that, corresponding to equation (17), if 
the variation 6 is replaced by the differential d the 
equation holds in similar form, 

(dlnA/dlnA)p= -(I --y-_-)/m. (22) 

This can be verified also by transforming equation (11) 
to the form it takes when the variable L is transformed 
to A as variable through equations (5) and (6). 

When y = 0, equation (22) is simply 

(dInA/dInA),=1-1. (23) m 

This equation can be integrated from A,, to A to 
determine A in terms of A, A,, and A,,. The result 
is easily seen to be 

AlAo = (A,/A)cl’+l. (24) 

If the beginning point for the integration is displaced 
slightly in time by an amount dt, the changes in initial 
and final cross-section for the same full interval At are 
respectively A, 6t and A dt. Our variation 6A, due 
to initial inhomogeneity can be represented by a 
fictitious time displacement as well and so we have 
that 

and so 
dA/dA, = A/A,, 

6A = (A,/A)(l’“WA,. (25) 

Therefore, if at some stage in the deformation when 
y = 0, there is an inhomogeneity 6A,, after subsequent 
deformation, during which A, reduces to A, the 
resultant inhomogeneity 6A will be given by equation 

(25). 
The notable feature of equation (25) is the very 

strong dependence on m. This explains why con- 
siderable ductility can be obtained even beyond the 
point of instability for materials of sufficiently high m, 
that is for m greater than about Q. In fact this is 
the principal source of the phenomenon that has been 
termed “superplasticity.” 
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4. EFFECT OF ELASTICITY IN LOADING 

General relationships 

Since most tensile testing is done with machines 
that possess considerable elasticity because of con- 
necting linkages, load measuring devices, etc. and 
since the specimen is also elastic, it is desirable to 
examine some of the phenomena that result from the 
elasticity. Of course this problem is not a new one, 
and it has been discussed by other authors before. 
The present treatment is in large measure an augmen- 
tation of the previous treatments with special emphasis 
on the rate sensitivity of the specimen. 

The model that we shall take for the loading 
apparatus is that the specimen of length L is at 
any instant in series with a spring of elastic constant 
K that is stretched by an amount Lr - L. The 
length Lr is then the specimen length for which there 
would be no load. Then if the load is P it is given 

by 

KL,, and so we may replace L by Ll where we wish 
and neglect uA/KL compared to 1. Then 

5 = (KLo/Ao)(L~/Lo)2C(i;,/L,) - (&)I. (36) 

If we make the transcriptions: 

8 = 4,/L,, 
i E L/L, 
K = KL,/A,, 

we have finally 

d = K(L1/&,)2[(.&,/L1)i - i], (31) 

where the only approximation has been to neglect u 
compared to K. 

When equation (31) is applied to an interval during 
which the incremental strain is small, the variation 
of Ll is small compared to L,, and if L, is taken to be 
the value of L, at that start of the interval, the equa- 
tion can be used in the simpler form 

P = K(L, - L). (26) 

The applied extension rate is &, which is the extension 
rate that a perfectly weak specimen would experience. 

We shall now consider the time derivative of 
equation (26) 

C+ = K(i - i), (32) 

where K and C are computed with the same value of L,. 
This is the form that is used as the starting point 
by Noble and H~11.t~) 

p = K(_i;, - L). (27) 

If L, is the nominal gauge length, and A,, the corre- 
sponding cross-section such that at any stage in 
the deformation, 

LA = L&,, (28) 

we may convert equation (27) to one involving stress 
and strain rates. Since 

P = tiA + UA, 
we have 

Load reluxation test 

If in the course of a tensile test the cross-head 
motion is stopped, the load will relax gradually with 
time. This stress relaxation experiment can be easily 
analyzed to deduce m as a function of c as follows: 

Since the relaxation is generally a slow process, 
each stage of the process is close to steady state. Then 

m = cl In a/d In i. (33) 
Since d = 0, 

fj = --KC, 

d In 5 = d In I!, 
Then 

tiA+oA=K(i;,-L). 

5 = (KL/A)[(i;,/L) - (L/L)] - o(A/A), 

and since 

A i; -=-_ 
A L’ 

+J(c.)‘~_(1_2!)~]. (29) 

Now 
L = Ll - P/K, 

= L,( 1 - P/KL,). 

and so with this geometrical constraint 

m = (d In o/d In ti).=s. (34) 

Therefore, if In CT is plotted against In c?‘, it is easy 
to determine m as slope of the curve at each point. 
Note that it is not necessary to assume any special 
power law for the dependence of a on i to get this 
result. 

General approach to steady state 

If 8 # 0, it is possible to estimate the approach 
of o to steady state. At relatively high temperatures 
this is important since it is necessary to be able to 
distinguish a persistent change of u due to continuing 
hardening of the specimen from a change of load due 
to elastic behavior. We shall comaute the mode of But P is always much smaller than either KL or I 
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approach to steady state when m is relatively constant. 
From equation (32), 

KE’ = Ki - 6, 

and 
In i = In d + In [l - (S/K~)]. 

Since near steady state $/Kf? Q 1, 

highi-6/Ki, 

(35) 

and then (dropping the approximation symbol) 

din<= -(l/Ki)dti. 

Substituting this expression of 2 in equation (33), 
we obtain 

-(m/Ki) 12% = d h CT. (36) 

Since m, K and d are constant in the range considered, 
equation (36) can be integrated. 

-(m/G)& = In (o/a,), (37) 

where a, is the steady state value of (T when 8 = E’ and 
so when I_+ = 0. Since os - 0 < os we can expand 
the right hand member of equation (37) as 

CT+ -_[l - (&)I, - 

and write equation (37) as 

(mU,/Kd)(C?/U,) = 1 - U/Us. 

This% easily integrated to give 

(T/C, = 1 - exp [-(Ki/mU,)(t + to)], (33) 

where t, is a constant of integration. If we make the 
replacements it z he, t?tO = e,, 

(T/U, = 1 - exp [-(K/mo&, + &I, (39) 

where he is the strain variable representing the 
increment of strain from the starting point which 
must be already near the steady state. 

This result shows that the approach to steady 
state when d # 0 proceeds exponentially rather than 

by a power law which is the case for the relaxation 
when C = 0. The characteristic strain increment 
that describes the speed with which alus approaches 1 
is (W&Us/K). The smaller this number is, the more the 
test reflects the material properties since then < 
is closer to the imposed rate C. That number is small 
when m is small and when K/U, is large, i.e. for a hard 
machine. 

5. DISCUSSION 

The results of Section 3 above show that the utility 
of the tensile test for the determination of material 
properties is severely restricted for materials with 
small m. In particular it is not possible then to 
obtain reliable data in the fully hardened state where 
y has become very small. It would seem that there 
is good reason to place greater emphasis on the use 
of torsion testing methods where possible. Although 
such methods have not been exploited much to date, 

there is enough experiencec5) with them to indicate 

that they can be effectively employed, and that they 

can be improved by further investigations. 

The main problem with tensile testing is that, 

because of plastic flow instability and tensile fracture 
behavior, it is not generally possible to obtain reliable 

results on the steady state stress at a given strain rate. 

These data are readily obtained in torsion tests 

even with solid specimens. The early strain hardening 

behavior, however, is not obtained easily in torsion 

tests except with tubular specimens. But that range 

of data is explored readily by the tensile test. It would 

seem therefore that a judicious combination of 

tensile and torsion testing could produce reliable 

results for most materials over a wide range of testing 

temperatures and rates. 
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